Models of cytoskeletal mechanics of adherent cells.
نویسندگان
چکیده
Adherent cells sense their mechanical environment, which, in turn, regulates their functions. During the past decade, a growing body of evidence has indicated that a deformable, solid-state intracellular structure known as the cytoskeleton (CSK) plays a major role in transmitting and distributing mechanical stresses within the cell as well as in their conversion into a chemical response. Therefore in order to understand mechanical regulation and control of cellular functions, one needs to understand mechanisms that determine how the CSK changes its shape and mechanics in response to stress. In this survey, we examined commonly used structurally based models of the CSK. In particular, we focused on two classes of these models: open-cell foam networks and stress-supported structures. We identified the underlying mechanisms that determine deformability of those models and compare model predictions with data previously obtained from mechanical tests on cultured living adherent cells at steady state. We concluded that stress-supported structures appear more suitable for describing cell deformability because this class of structures can explain the central role that the cytoskeletal contractile prestress plays in cellular mechanics.
منابع مشابه
Distinct mechanical behavior of HEK293 cells in adherent and suspended states
The mechanical features of individual animal cells have been regarded as indicators of cell type and state. Previously, we investigated the surface mechanics of cancer and normal stromal cells in adherent and suspended states using atomic force microscopy. Cancer cells possessed specific mechanical and actin cytoskeleton features that were distinct from normal stromal cells in adherent and susp...
متن کاملApplication of Nano-Contact Mechanics Models in Manipulation of Biological Nano-Particle: FE Simulation
Contact mechanics is related to the deformation study of solids that meet each other at one or more points. The physical and mathematical formulation of the problem is established upon the mechanics of materials and continuum mechanics and focuses on computations involving bodies with different characteristics in static or dynamic contact. Contact mechanics gives essential information for the s...
متن کاملGene Expression Profile of Adherent Cells Derived From Human Peripheral Blood: Evidence of Mesenchymal Stem Cells
Mesenchymal stem cells (MSCs) provide a novel option in cellular therapy and tissue engineering. Recent studies indicated that it is possible to obtain MSCs from peripheral blood by attachment ability to plastic surface. To evaluate adherent cells derived from peripheral blood, their expression profile and surface markers were investigated. The results of RT-PCR indicated that these cells expre...
متن کاملSlow stress propagation in adherent cells.
Mechanical cues influence a wide range of cellular behaviors including motility, differentiation, and tumorigenesis. Although previous studies elucidated the role of specific players such as ion channels and focal adhesions as local mechanosensors, the investigation of how mechanical perturbations propagate across the cell is necessary to understand the spatial coordination of cellular processe...
متن کاملRegulation of cytoskeletal mechanics and cell growth by myosin light chain phosphorylation.
The role of myosin light chain phosphorylation in regulating the mechanical properties of the cytoskeleton was studied in NIH/3T3 fibroblasts expressing a truncated, constitutively active form of smooth muscle myosin light chain kinase (tMK). Cytoskeletal stiffness determined by quantifying the force required to indent the apical surface of adherent cells showed that stiffness was increased two...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biomechanics and modeling in mechanobiology
دوره 1 1 شماره
صفحات -
تاریخ انتشار 2002